Toward time resolved 4D cardiac CT imaging with patient dose reduction: estimating the global heart motion

نویسندگان

  • Katsuyuki Taguchi
  • W. Paul Segars
  • George S.K. Fung
  • Benjamin M.W. Tsui
  • Russell H. Morgan
چکیده

Coronary artery imaging with multi-slice helical computed tomography is a promising noninvasive imaging technique. The current major issues include the insufficient temporal resolution and large patient dose. We propose an image reconstruction method which provides a solution to both of the problems. The method uses an iterative approach repeating the following four steps until the difference between the two projection data sets falls below a certain criteria in step-4: 1) estimating or updating the cardiac motion vectors, 2) reconstructing the time-resolved 4D dynamic volume images using the motion vectors, 3) calculating the projection data from the current 4D images, 4) comparing them with the measured ones. In this study, we obtain the first estimate of the motion vector. We use the 4D NCAT phantom, a realistic computer model for the human anatomy and cardiac motions, to generate the dynamic fan-beam projection data sets as well to provide a known truth for the motion. Then, the halfscan reconstruction with the sliding time-window technique is used to generate cine images: f(t, r). Here, we use one heart beat for each position r so that the time information is retained. Next, the magnitude of the first derivative of f(t, r) with respect to time, i.e., |df/dt|, is calculated and summed over a region-of-interest (ROI), which is called the mean-absolute difference (MAD). The initial estimation of the vector field are obtained using MAD for each ROI. Results of the preliminary study are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

حفاظت پرتویی بیماران در سی تی آنژیوگرافی قلب

Introduction: Cardiac CT (Computed Tomography) angiography applies as a pre-exam method for evaluating the patients with medical problems in their cardiac arteries. Due to the high delivered dose in this imaging method, dose reduction techniques and imaging strategies that serve the images quality with minimum patient dose are the subjects for investigation and research studies. This study will...

متن کامل

Effect of Heart Rate on CT Angiography Using the Enhanced Cardiac Model of the 4D NCAT

We investigate the effect of heart rate on the quality and artifact generation in coronary artery images obtained using multi-slice computed tomography (MSCT) with the purpose of finding the optimal time resolution for data acquisition. To perform the study, we used the 4D NCAT phantom, a computer model of the normal human anatomy and cardiac and respiratory motions developed in our laboratory....

متن کامل

Assessment of Left Ventricular Function in Cardiac MSCT Imaging by a 4D Hierarchical Surface-Volume Matching Process

Multislice computed tomography (MSCT) scanners offer new perspectives for cardiac kinetics evaluation with 4D dynamic sequences of high contrast and spatiotemporal resolutions. A new method is proposed for cardiac motion extraction in multislice CT. Based on a 4D hierarchical surface-volume matching process, it provides the detection of the heart left cavities along the acquired sequence and th...

متن کامل

4D CT image reconstruction with diffeomorphic motion model

Four-dimensional (4D) respiratory correlated computed tomography (RCCT) has been widely used for studying organ motion. Most current RCCT imaging algorithms use binning techniques that are susceptible to artifacts and challenge the quantitative analysis of organ motion. In this paper, we develop an algorithm for analyzing organ motion which uses the raw, time-stamped imaging data to reconstruct...

متن کامل

A Simulation Study on Patient Setup Errors in External Beam Radiotherapy Using an Anthropomorphic 4D Phantom

Introduction Patient set-up optimization is required in radiotherapy to fill the accuracy gap between personalized treatment planning and uncertainties in the irradiation set-up. In this study, we aimed to develop a new method based on neural network to estimate patient geometrical setup using 4-dimensional (4D) XCAT anthropomorphic phantom. Materials and Methods To access 4D modeling of motion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006